新領域創成研究部
研究分野 | Fundamental theory and simulation of materials intelligence for energy applications; thermoelectrics, artificial muscles, and solid-state batteries. |
---|---|
主な研究テーマ |
|
所属学会 | The Fullerenes, Nanotubes and Graphene Research Society |
研究概要 | |
The development of reliable and environmentally friendly approaches for energy conversion and storage is one of the most challenges that our society is facing. The purpose of this research is design and discovery of novel materials for high efficiency and performance of new energy devices by combining thermoelectricity (TE), batteries and artificial muscles (AM), so-called “hybrid energy systems” (HES). The TE is a solid-state devices that generate electricity from a temperature gradient, and it is ideal to recover waste thermal energy and heat from sunlight. The battery is composed of several electrochemical cells to provide the required voltage using electrochemical energy storage. And the AM is an actuator device that can generate mechanical energy under an applied voltage. Based on our previous works of the TE and AM [1, 2, 3], we will continue to improve the performance for each energy systems (TE, battery, and AM) by combining the density functional theory (DFT) with multiscale analytical models. Besides that we also establish a theoretical framework to predict and guide experimental designs for the HES. Such hybrid energy systems might play a major role in future energy conversion and storage technologies. [1] N. T. Hung, E. H. Hasdeo, A. R. T. Nugraha, M. S. Dresselhaus and R. Saito, Quantum effects in the thermoelectric power factor of low-dimensional semiconductors, Phys. Rev. Lett. 117, 036602 (2016). [2] N. T. Hung, A. R. T. Nugraha and R. Saito, High-performance three-dimensional carbon Archimedean lattices electromechanical actuators, Carbon 125, 472-479 (2017). [3] N. T. Hung, A. R. T. Nugraha and R. Saito, Designing high-performance thermoelectrics in two-dimensional tetradymites, Nano Energy 58, 743-749 (2019). |
関連記事一覧
- 会議発表・論文・出版2023.09.22今日の半導体露光装置や蛍光物質を使わない医療技術において、100 nm〜300 nmの波長の短いレーザー光源が求められています。波長の短いレーザー光源を得る一つの手法として、第2高調波発生(SHG)
- 会議発表・論文・出版2023.03.03東北大学学際科学フロンティア研究所のNguyen Tuan Hung助教が参加する、東京都立大学、産業技術総合研究所、東北大学、名古屋大学、筑波大学、大阪大学などの研究チームは、直径数〜数十ナノメー
- 会議発表・論文・出版2022.12.16新領域創成研究部のNguyen Tuan Hung 助教は、インドネシア科学院物理学研究所 Ahmad Ridwan Tresna Nugraha 主任研究員、東北大学大学院理学研究科物理学専攻 齋